Prompt-Optimized OCR for Production:
GEPA Shows OCR is Steerable for Business

Document Pipelines

Greg Miller (greg@intrinsic-labs.ai)

Jon Slemp (jon@intrinsic-labs.ai)

Intrinsic Labs Research Team
https://intrinsic-labs.ai/
October 2025

Abstract

This whitepaper evaluates prompt steerability in optical character recognition (OCR)
pipelines and demonstrates that modern language models are now capable of im-
proving these systems autonomously through reflection. We find that OCR is mean-
ingfully steerable in production-like settings—particularly for business workflows
built on recurrent, family-similar documents such as invoices, forms, and utility
bills. Using the Generative Error—-Prompt Alignment (GEPA) optimizer within a
forked DSPy framework on the Omni benchmark, we observed consistent gains of
3.3-3.6 percentage points across Gemini models and a Pareto frontier approaching
97 percent on structured extraction subsets. These improvements concentrate in
the language stage (Markdown—JSON), where schema discipline, read-order, and
reconciliation policies matter most; perception-stage errors still define the upper
bound on poor scans. More broadly, this study shows that frontier models are
now intelligent enough to analyze their own failures and iteratively optimize their
prompts—a shift that makes self-improving, reflection-driven pipelines not just pos-

sible, but practical for production Al systems.

https://intrinsic-labs.ai/

Intrinsic Labs Research Prompt Optimization for OCR

OCR Model Performance — GEPA Optimized vs Original (Intrinsic Labs)

I Intrinsic Labs (GEPA Optimized)
96 - Original

94.8%

94 -

92.4%

91.5%

89.7%

JSON Accuracy (%)

88.8%

86.1%

Gemini 2.5 Pro Gemini 2.5 Flash Gemini 2.0 Flash

Figure 1: GEPA improved JSON extraction accuracy from baseline to optimized perfor-
mance. Source: Studio-Intrinsic / benchmarking-ocr-gepa.

1 Introduction

Intrinsic Labs builds production Al systems for businesses, with a focus on reliability, cost,
and operational efficiency. We believe modern Al pipelines should self-improve as models
advance—primarily through prompt optimization and reflective feedback loops—reserving

fine-tuning for cases where it is demonstrably necessary.

Document pipelines suffer from the compounding error problem present in non-determenistic
systems: five stages at 90% each yield (0.9)° ~ 0.59 end-to-end reliability, making them
effectively useless. Our question was practical: can an automatic prompt optimization

layer materially shift outcomes without retraining, and under what conditions?

Key takeaways
e OCR is steerable in practice for business pipelines with family-similar inputs,
producing consistent accuracy gains and more stable outputs.

e Gains concentrate in the language stage (Markdown—JSON), where policy, structure,

and consistency dominate.

e Perception-stage limits persist on poor scans; however, for typical enterprise docu-

ments, prompt optimization yields production-relevant improvements.

https://github.com/Studio-Intrinsic/benchmarking-ocr-gepa/blob/main/results.png

Intrinsic Labs Research Prompt Optimization for OCR

2 Motivation

2.1 Why revisit OCR steerability now

Older models made prompt optimization brittle. Frontier models can reflect and follow
procedural specifications with much higher fidelity, enabling reliable control over extrac-
tion logic, schema adherence, and hallucination discipline. This shift makes prompt

optimization a first-class lever for production teams.

2.2 Business relevance
Most enterprise workflows process recurring document families: monthly utility bills,
tax forms, carrier invoices, statements. In these contexts, marginal accuracy gains are

amplified by volume, and consistency reduces human exception handling. A steerable,

self-improving extraction layer therefore compounds value over time.

3 Benchmark and Pipeline

3.1 Task and dataset

We evaluated on the Omni OCR Benchmark, using 1,000 real-world documents (invoices,
receipts, utility bills, forms) with ground-truth JSON. We held out 20% for validation.

3.2 Two-stage architecture

1. Image — Markdown (vision): Gemini 2.0 Flash extracts textual content and coarse

structure.

2. Markdown — JSON (language): An LLM maps text to a strict schema with field-

level accuracy guarantees.

This mirrors typical production flows and isolates where prompting has leverage (language

stage) versus where perception quality dominates (vision stage).

3

https://github.com/getomni-ai/benchmark

Intrinsic Labs Research Prompt Optimization for OCR

3.3 Metric

We used Omni’s TypeScript evaluator:

additions + deletions + modifications
total fields ’

Accuracy =1 —

It symmetrically penalizes missing, spurious, and incorrect fields and reflects business

constraints (e.g., totals must reconcile, dates must be valid).

3.4 Baselines

e Gemini 2.0 Flash: 86.1%
e Gemini 2.5 Flash: 88.8%

e Gemini 2.5 Pro: 91.5%

4 Optimization Framework

4.1 GEPA with DSPy: reflective prompt evolution

We began with GEPA (Genetic—Pareto), a framework for optimizing textual compo-
nents of any system—such as prompts, code, or configuration strings—through reflective
text evolution. GEPA uses large language models (LLMs) not merely as solvers but
as reflectors: they analyze execution traces, identify weaknesses, and propose textual

improvements that move the system closer to its objective.

Unlike reinforcement learning or brute-force grid search, GEPA operates through a lightweight
evolutionary process:

1. Run the current candidate (prompt or program) on a small evaluation set and collect

structured traces (outputs, metrics, and errors).

2. Pass these traces to a reflection model that explains what went wrong and proposes

specific textual edits.

3. Evaluate the edited candidates and update a Pareto frontier balancing task accuracy

with prompt simplicity.
4. Repeat until convergence or budget exhaustion.

4

Intrinsic Labs Research Prompt Optimization for OCR

This approach effectively “pre-computes” reasoning and policy into the prompt, yielding
a configuration that generalizes across future documents. The official implementation of
GEPA integrates directly with DSPy through the dspy.GEPA API, making it easy to treat

prompts or entire DSPy programs as optimizable components.

4.2 Minimal fork for system-prompt control and image context

We used dspy .GEPA as the base optimizer and created a minimal fork of DSPy to support

two extensions required for document-based tasks:

e System-prompt overrides: allowed per-run injection of custom system instructions
so GEPA could test variations in framing, tone, and structural guidance (coverage,
schema adherence, read-order, and hallucination policy) without modifying the under-

lying program code.

e Image-URL visibility: exposed document image URLSs to the reflection model (GPT-
5) so it could interpret the same visual context that the Gemini executor used, enabling

more targeted reflections about layout, coverage gaps, or mis-parsed regions.

4.3 Optimization flow

Our optimization loop proceeded as follows:

1. Seed and evaluate. Start from an initial prompt governing the OCR— Markdown
and Markdown—JSON stages. Execute on a curated validation slice using Gemini
2.0 Flash as the task model. Capture JSON diff metrics and metadata about missing

fields or mis-ordered content.

2. Reflect. Provide execution traces and image URLs to the GPT-5 reflection model.
GPT-5 analyzed failure clusters (e.g., omitted footers, totals misalignment, halluci-

nated values) and proposed minimal, testable edits.

3. Select. Evaluate new candidates, track per-field accuracy, and update the Pareto
frontier over accuracy and prompt complexity. Shorter, more procedural edits were

favored.

4. Tterate. Continue until convergence or diminishing returns, exporting the top-performing

candidate as the optimized prompt.

Intrinsic Labs Research Prompt Optimization for OCR

4.4 Curating the optimization slice

To keep the optimization budget efficient and signal dense, we optimized on a difficult

but solvable subset of the Omni benchmark:

e Documents with baseline accuracy between 70-90%, where the model had partial un-

derstanding but systematic extraction errors.

e Coverage across invoices, receipts, and multi-column forms exhibiting common real-

world failure modes (e.g., dropped totals, merged fields, unreadable line items).

This “teachable band” yielded frequent, interpretable feedback for the reflection model

and avoided wasting compute on unsalvageable scans or trivially correct samples.

4.5 Execution and cross-model evaluation
The optimization itself used:

e Reflection model: GPT-5-High, guiding prompt evolution through analysis and cri-

tique.

e Executor: Gemini 2.0 Flash, providing rapid, consistent evaluations during search.

Once the optimized prompt converged, we froze it and evaluated the full benchmark
using:

e Gemini 2.0 Flash (optimization target),

e Gemini 2.5 Flash, and

e Gemini 2.5 Pro.

This measured transferability across model scales. Gains generalized strongly—roughly

80-90% of the improvement carried forward—supporting a practical pattern: optimize

once on a small model, deploy broadly.

4.6 Qualitative evolution of the prompt

Across iterations, the reflective model independently converged toward best-practice ex-

traction policies familiar to experienced OCR engineers:

Intrinsic Labs Research Prompt Optimization for OCR

bR

Explicit coverage instructions (“include everything visible,” “preserve reading order”).

Rules against hallucination (“do not invent,” “use unreadable for illegible text”).

Schema discipline (“each label /value on its own line,” “use Markdown tables; HTML

only for merged cells”).

Fidelity to layout (“parse line items before totals,” “keep captions adjacent to figures”).

By the end of optimization, GEPA had effectively written a policy prompt—a determin-

istic specification for reliable document transcription.

4.7 Reproducibility

We fixed random seeds for data splits, versioned evaluator configurations, and logged
every candidate and score. The forked DSPy code (system-prompt overrides, image-URL

hooks) and all experiment scripts are open-sourced at:

https://github.com/Studio-Intrinsic/benchmarking-ocr-gepa

5 Results and Analysis

5.1 Aggregate performance

Model Baseline Config-Only Final Optimized
Gemini 2.0 Flash ~ 86.1% 86.6% 89.7% (+3.6)
Gemini 2.5 Flash ~ 88.8% 89.3% 92.4% (+3.6)
Gemini 2.5 Pro 91.5% - 94.8% (+3.3)

Table 1: OCR pipeline accuracy across models before and after GEPA optimization.
“Config-Only” reflects evaluator/model-choice hygiene (no search).

We also observed a Pareto frontier approaching ~97% on structured subsets, indicating

headroom where document families are consistent and policies are clear.

5.2 Where steerability shows up

Language stage (steerable). GEPA reliably improved:

7

https://github.com/Studio-Intrinsic/benchmarking-ocr-gepa

Intrinsic Labs Research Prompt Optimization for OCR

e Schema anchoring and null vs. hallucinate policy,
e Normalization (dates, currency/cent precision),
e Reconciliation (subtotal equals sum of line items),

e Read-order and block grouping (e.g., captions, headers).

Vision stage (bounded by input). Missed tokens and corrupt text rarely improved

via prompting; quality limits persist on low-resolution or artifacted scans.

5.3 Cross-model transfer
Prompts optimized on Gemini 2.0 Flash transferred 80-90% of their gains to 2.5 Flash

and Pro with light edits—supporting a cost-efficient strategy: optimize on lower-cost

models, then port.

5.4 Steerability conditions for business

OCR steerability is strongest when:

Documents are family-similar (recurring vendor templates, forms),

The output schema is strict and validated,

Policies (read-order, null handling, reconciliation) are explicit,

Perception quality is reasonable (print, scan, column bleed under control).

These conditions describe most enterprise pipelines.

6 Resulting Optimized Prompt

6.1 Final prompt produced by GEPA

Convert the provided document image to Markdown. Return only the Markdown with no exp

Rules

1) Coverage and reading order

Intrinsic Labs Research Prompt Optimization for OCR

2)

3)

4)

5)

6)

7)

8)

9)

- Include everything visible: titles, headings, subheadings, headers/footers, page
- Preserve the original reading order (top-to-bottom, left-to-right). Keep related

- Do not omit or invent any content.

Headings and hierarchy

- Render the main document/page title as H1 (# ...) exactly as printed.

Use H2/H3 (##, ###) for subordinate section labels according to visual prominenc

Keep heading text exactly as shown (punctuation, casing, typos unchanged).

Separate logical blocks with a single blank line.

Text blocks, labels, and line breaks

- Preserve meaningful line breaks. Do not arbitrarily merge or split lines.

- Keep each labeled field on its own line unless the source prints multiple labels
- Preserve punctuation, casing, hyphenation, and spacing exactly as printed.

- Preserve typographic emphasis that conveys structure: use Markdown bold/italic o

Tables

- Use a Markdown table for standard tabular data with clear columns/rows.

- Use HTML <table> only when needed to preserve merged cells or nested tables.
- Do not convert simple form layouts into tables. Transcribe as labeled lines.
- Preserve column order, header labels, and units exactly as printed.

- If a cell is blank, output an empty cell.

Numbers and units

- Copy values exactly, including currency symbols, separators, decimals, and units

Charts and infographics
- Add one concise, factual alt-text line using Markdown image syntax without a URL
- Include readable data tables only when printed data is clearly visible.

— Do not invent or estimate values.

Logos, watermarks, stamps, and page numbers

- Transcribe visible text exactly as printed.

Checkboxes
- Render unchecked as and checked as . Keep each adjacent to its label.
Unreadable or ambiguous content

- Do not guess. Use ’unreadable’ in place of illegible text.

Intrinsic Labs Research Prompt Optimization for OCR

10) Consistency and formatting
- Maintain one coherent Markdown style across the document.
- Preserve meaningful line breaks and ordering.

- Do not transform text into lists unless explicitly printed.

11) Prohibitions
- Do not add explanations, commentary, or metadata.
- Do not correct spelling or formatting.

- Do not fabricate content.

6.2 Why this prompt matters

The prompt encodes coverage, ordering, schema discipline, and non-hallucination poli-
cies—ezxactly the factors that drive production reliability. GEPA “rediscovered” best
practices human engineers use, and made them explicit and testable. It is a reusable,

policy-level artifact.

7 Practical Guidance for Deployment

7.1 Where to apply GEPA

e Best fit: Schema-constrained extraction (Markdown—JSON), recurring vendor/forms,

and workflows where reconciliation rules matter.

e Prerequisites: Reasonable scan quality; clear schema; validation and post-processing

checks.

7.2 Operational checklist

Define a strict JSON schema, null policy, and reconciliation checks.

Establish a held-out validation split with per-field metrics.

Run configuration hygiene (model choice, scaffolding) before GEPA.

Optimize teachable subsets (0.70-0.90 baseline) to control cost.

Add runtime guardrails (schema validator; subtotal sum checks).

10

Intrinsic Labs Research Prompt Optimization for OCR

e Monitor vendor/form drift; refresh prompts on distribution shift.

7.3 Risk and compliance

e Ensure PII handling aligns with policy; redact where needed.
e Enforce “no invention”—prefer null over guessed values.

e Consider a clause to ignore instructions embedded in scanned text.

8 Discussion

8.1 What we learned

We find OCR is a steerable target for prompt optimization in the settings most businesses
care about: recurring, family-similar documents with strict output schemas. Gains accrue
where policy and structure dominate (language stage), while perception continues to

bound the ceiling on degraded scans.

8.2 Why this matters for system design

This supports a layered pattern: stabilize perception with strong OCR backbones and pre-
processing; then add a reflective, prompt-optimized extraction head. As models advance,
the optimization layer captures capability gains without retraining—turning reliability

into a moving frontier that improves over time.

9 Limitations and Future Work

9.1 Limitations

e Results pertain to document OCR/structured extraction; unconstrained generation
differs.

e Prompts can overfit to document families; continuous monitoring is recommended.
e Severe perception defects (low-res scans, heavy artifacting) still dominate failure modes.

11

Intrinsic Labs Research Prompt Optimization for OCR

9.2 Future work

Adaptive runtime selection: Choose prompts per document via similarity search.

Layout-aware cues: Add lightweight spatial features (zones, columns) to prompts.

e Human-in-the-loop: Convert reviewer edits into GEPA seeds for faster convergence.

Perception advances: Pair prompt-optimized extraction with improved vision back-

bones.

10 Conclusion

OCR is a steerable task for most business pipelines. In contexts with family-similar
documents and strict schemas, an automatic prompt optimization layer delivers reli-
able, repeatable gains (3.3-3.6 pts here) and reduces exception handling. While per-
ception bounds outliers, policy-focused prompting turns “almost right” into production-
ready—no retraining required. We believe this design pattern is the most practical path

to self-improving document Al systems.

Implementation Reference

Full code, scripts, and evaluator details:

https://github.com/Studio-Intrinsic/benchmarking-ocr-gepa

References

Omni OCR Benchmark — https://github.com/getomni-ai/benchmark

DSPy Framework — https://github.com/stanfordnlp/dspy

GEPA Optimizer — https://github.com/gepa-ai/gepa

Studio-Intrinsic Implementation — https://github.com/Studio-Intrinsic/benchmarking-ocr-g

12

https://github.com/Studio-Intrinsic/benchmarking-ocr-gepa
https://github.com/getomni-ai/benchmark
https://github.com/stanfordnlp/dspy
https://github.com/gepa-ai/gepa
https://github.com/Studio-Intrinsic/benchmarking-ocr-gepa

	Introduction
	Motivation
	Why revisit OCR steerability now
	Business relevance

	Benchmark and Pipeline
	Task and dataset
	Two-stage architecture
	Metric
	Baselines

	Optimization Framework
	GEPA with DSPy: reflective prompt evolution
	Minimal fork for system-prompt control and image context
	Optimization flow
	Curating the optimization slice
	Execution and cross-model evaluation
	Qualitative evolution of the prompt
	Reproducibility

	Results and Analysis
	Aggregate performance
	Where steerability shows up
	Cross-model transfer
	Steerability conditions for business

	Resulting Optimized Prompt
	Final prompt produced by GEPA
	Why this prompt matters

	Practical Guidance for Deployment
	Where to apply GEPA
	Operational checklist
	Risk and compliance

	Discussion
	What we learned
	Why this matters for system design

	Limitations and Future Work
	Limitations
	Future work

	Conclusion

